Chapter 1
An Introduction to A&P

Introduction

• Study strategies crucial for success
 – Attend all lectures, labs, and study sessions
 – Read your lecture and laboratory assignments before going to class or lab
 – Devote a block of time each day to your A&P course
 – Set up a study schedule and stick to it
 – Do not procrastinate!
 – Approach the information in different ways
 – Develop the skill of memorization, and practice it regularly
 – As soon as you experience difficulty with the course, seek assistance

Introduction
• Anatomy and physiology affect your life everyday
 – Anatomy is the oldest medical science
 • 1600 B.C.
 – Physiology is the study of function
 • Biochemistry
 • Biology
 • Chemistry
 • Genetics

Structure and Function

• Anatomy
 – Describes the structures of the body
 • What they are made of
 • Where they are located
 • Associated structures
 – Physiology
 • Is the study of
 • Functions of anatomical structures
 • Individual and cooperative functions

Anatomy and Physiology Integrated

• Anatomy
 – Gross anatomy, or macroscopic anatomy, examines large, visible structures
 • Surface anatomy: exterior features
 • Regional anatomy: body areas
 • Systemic anatomy: groups of organs working together
 • Developmental anatomy: from conception to death
 • Clinical anatomy: medical specialties

Anatomy and Physiology Integrated

• Anatomy
 – Microscopic anatomy examines cells and molecules
 • Cytology: study of cells and their structures
 • cyt- = cell
 • Histology: study of tissues and their structures
Anatomy and Physiology Integrated

• Physiology
 – **Cell physiology**: processes within and between cells
 – **Special physiology**: functions of specific organs
 – **Systemic physiology**: functions of an organ system
 – **Pathological physiology**: effects of diseases

Levels of Organization

• **The Chemical (or Molecular) Level**
 – Atoms are the smallest chemical units
 – Molecules are a group of atoms working together

• **The Cellular Level**
 – Cells are a group of atoms, molecules, and organelles working together

• **The Tissue Level**
 – Tissues are a group of similar cells working together

• **The Organ Level**
 – An organ is a group of different tissues working together

Levels of Organization

• **The Organ System Level**
 – Organ systems are a group of organs working together
 – Humans have 11 organ systems

• **The Organism Level**
 – A human is an organism
Homeostasis

- **Homeostasis**: all body systems working together to maintain a stable internal environment
 - Systems respond to external and internal changes to function within a *normal range* (body temperature, fluid balance)
 - Failure to maintain homeostasis leads to illness or even death
 - Homeostatic regulation is the adjustment of physiological systems to preserve homeostasis
Homeostasis

- Homeostatic regulation occurs via two general mechanisms: autoregulation and extrinsic regulation

- Autoregulation (intrinsic)
 - Automatic response in a cell, tissue, or organ to some environmental change
 - When oxygen levels in a tissue decline, the cells release chemicals that cause the dilation of local blood vessels thus increasing blood flow and as a consequence increasing oxygen availability

Homeostatic Regulation

- Regardless of the system(s) involved, the regulatory machinery consists of three parts
 - A receptor or sensor that detects a specific stimulus
 - A control center or integration center that receives and processes information from the receptor
 - An effector, a cell or organ that responds to the control center and either opposes or amplifies the stimulus

Feedback-Control Systems

- In order to maintain homeostasis the control center must have continuous information from the sensor so that it can initiate regulatory action
- Feedback occurs when sensory information about a particular variable (temperature, pH, etc) is used to control the processes that influence that variable
- There are two types of feedback-control systems; Negative Feedback and Positive Feedback

Negative Feedback

- We are all familiar with negative feedback.
- It is the mechanism by which your home thermostat regulates the temperature of your house
- Negative feedback occurs when variation outside a desired range triggers a response that corrects the situation
- Most homeostatic regulation involves negative feedback
Positive Feedback

• In positive feedback, an initial stimulus amplifies the change in the original condition.
• In physiological systems, positive feedback is often the control mechanism that regulates stressful or dangerous processes that must be completed quickly.
• Regurgitation is a good example, once you start to puke you usually don’t stop until your stomach has emptied.

A Frame of Reference for Anatomical Studies

• Early anatomists needed to be able to communicate anatomically information effectively.
• Out of this need arose a special language of anatomy to refer to anatomical landmarks, regions and directions of the human body.
• A familiarity with this language will aid us in our study of anatomy and physiology.

Superficial Anatomy

• Superficial anatomy breaks the body into anatomical landmarks and regions.
• Standard anatomical illustrations show the body in anatomical position, with hands at the side and palms facing forward.
• A person lying down in the anatomical position is said to be supine when facing up and prone when facing down.

Anatomical Terminology

• Superficial Anatomy
 – Anatomical Landmarks
 • References to palpable structures
 – Anatomical Regions
 • Body regions
 • Abdominopelvic quadrants
 • Abdominopelvic regions
 – Anatomical Directions
 • Reference terms based on subject
Anatomical Regions

- To provide more specific location in the abdominal and pelvic region, clinicians refer to four abdominopelvic quadrants. Anatomists are a bit more precise using 9 abdominopelvic regions.
- Also note that left and right always refer to the left and right sides of the subject not the observer.
Anatomical Terminology

FIGURE 1–7 Abdominopelvic Relationships.

- **Regions and Quadrants of the Peritoneal Cavity**
- There are (a) nine abdominal regions and (b) four abdominal quadrants in the peritoneal cavity.

<table>
<thead>
<tr>
<th>Table 1-2 Directional Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Anterior</td>
</tr>
<tr>
<td>Posterior or dorsal</td>
</tr>
<tr>
<td>Caudal or caudal</td>
</tr>
<tr>
<td>Superior</td>
</tr>
<tr>
<td>Inferior</td>
</tr>
<tr>
<td>Medial</td>
</tr>
<tr>
<td>Lateral</td>
</tr>
<tr>
<td>Cranial</td>
</tr>
<tr>
<td>Caudal</td>
</tr>
<tr>
<td>Superior</td>
</tr>
<tr>
<td>Inferior</td>
</tr>
<tr>
<td>Anterior</td>
</tr>
<tr>
<td>Posterior</td>
</tr>
<tr>
<td>Superior</td>
</tr>
<tr>
<td>Inferior</td>
</tr>
<tr>
<td>Proximal</td>
</tr>
<tr>
<td>Distal</td>
</tr>
</tbody>
</table>

- **Directional Terms Applied to the Human Body**
- Paired directional terms are shown as applied to the human body.
Anatomical Terminology

- Sectional Anatomy
 - Planes and sections
 - **Plane**: a three-dimensional axis
 - **Section**: a slice parallel to a plane
 - Used to visualize internal organization and structure
 - Important in radiological techniques
 - MRI
 - PET
 - CT

- Planes of the Body
 - The three planes most commonly used in anatomical and medical imaging are the sagittal, frontal (or coronal), and transverse plane.

Figure 1–9 Sectional Planes.

- The transverse plane divides the body into superior and inferior
- The frontal (coronal) plane divides the body into anterior and posterior
- The sagittal plane divides the body into left and right
- The midsagittal plane divides the body exactly down the middle

Table 1–3 Terms That Indicate Sectional Planes

<table>
<thead>
<tr>
<th>Plane</th>
<th>Direction of Plane</th>
<th>Functional Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse</td>
<td>Perpendicular to long axis</td>
<td>Transversely or horizontally</td>
<td>A transverse, or horizontal, section separates superior and inferior portions of the body. A cut through the body parallel to long axis is called a cross section.</td>
</tr>
<tr>
<td>Sagittal</td>
<td>In plane of body</td>
<td>Sagittally</td>
<td>A sagittal section separates left and right portions of the body, as if a cut through the midsagittal plane.</td>
</tr>
<tr>
<td>Midsagittal</td>
<td>In midsagittal plane or median section the plane passes through the middle of the body, dividing the body into right and left halves.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasagittal</td>
<td>Parasagittal section which is just posterior to the midsagittal plane separates the body into right and left portions of unequal size.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>Frontally or craniad</td>
<td>Frontally or craniad</td>
<td>A frontal, or coronal, section separates anterior and posterior portions of the body, coronal usually refers to section passing through the skull.</td>
</tr>
</tbody>
</table>

Body Cavities

- Many vital organs are suspended within body cavities.
- These cavities have two functions
 - To protect delicate organs from accidental shocks and to cushion them from bumps and thumps as we move around
 - They allow internal organs, such as the stomach, lungs, heart, and bladder to expand and contract without affecting surrounding tissues and nearby organs
The Dorsal Body Cavity
- The dorsal body cavity refers to the fluid filled space surrounding the brain and spinal cord.
- It includes the cranial cavity, containing the brain, and the spinal cavity, containing the spinal cord.

The Ventral Body Cavity
- The ventral body cavity, or coelom, contains the organs of the respiratory, cardiovascular, digestive, urinary, and reproductive systems.
- The ventral body cavity is subdivided by the diaphragm into the superior thoracic cavity and the inferior abdominopelvic cavity.

The Thoracic Cavity
- The thoracic cavity contains the heart and lungs.
- It is subdivided into the left and right pleural cavities and the mediastinum.
 - Each pleural cavity contains one lung lined by a slippery serous membrane called the pleura.
 - The mediastinum contains the pericardial cavity.
 - The heart is surrounded by another serous membrane, the pericardium.

Body Cavities
- Serous membranes
 - Line body cavities and cover organs.
 - Consist of parietal layer and visceral layer.
 - Parietal layer — lines cavity.
 - Visceral layer — covers organ.
Serous Membrane
Serous membrane lines the pericardial cavity and reflects back to cover the heart—much the same way that an underinflated balloon would form two layers surrounding a fist.

Body Cavities

• The Abdominopelvic Cavity
 – Peritoneal cavity — chamber within abdominopelvic cavity
 • Parietal peritoneum lines the internal body wall
 • Visceral peritoneum covers the organs

The Abdominopelvic Cavity

• The abdominopelvic cavity extends from the diaphragm to the pelvis
• It is subdivided into the abdominal cavity which extends from the diaphragm to the superior margins of the pelvis and contains the liver, stomach, spleen and most of the large intestine
• Its second division, the pelvic cavity is bordered by the pelvis, with a floor of muscle and containing the reproductive organs, urinary bladder and the final portion of the large intestine